
M. BELAZOUGUI

/ OMMAIRE

PREFACE AVANT PROPOS

I. INTRODUCTION - PRESENTATION

- I.1. Introduction
- I.2. Présentation
 - 2.1. Aperçu historique sur les méthodes de calcul antérieures
 - 2.2. Conception semi-probabiliste états limites

II. LES CARACTERISTIQUES MECANIQUES DES MATERIAUX

- II.1. Béton
 - 1.1. Résistances caractéristiques
 - 1.2. Diagrammes "contraintes-déformations"
 - 1.3. Modules de déformation longitudinale

11.2. Acier

- 2.1. Classification des armatures
- 2.2. Caractères mécaniques
- 2.3. Diagrammes "contraintes déformations"

III. ACTIONS ET SOLLICITATIONS

III.1. Terminologie - Définitions

- 1.1. Les actions
- 1.2. Les sollicitations

III.2. Les Actions

- 2.1. Actions permanentes
- 2.2. Actions variables
- 2.3. Actions accidentelles

III3. Sollicitations de calcul - Combinaisons d'actions

- 3.1. Sollicitations de calcul vis-à-vis des états limites ultimes
- 3.2. Sollicitations de calcul vis-à-vis des états limites de service
- Combinaisons d'actions dans le cas de bâtiments courants

IV CALCUL DES SECTIONS EN FLEXION SIMPLE

IV1. Hypothèses de calcul

- 1.1. Hypothèses propres aux calculs aux états limites de service
- 1.2. Hypothèses propres aux calculs aux états limites ultimes de résistance sous sollicitations normales

- 1V2. Diagramme des déformations de la section à l'état limite ultime : Règle des 3 pivots
- IV.3. Section rectangulaire sans aciers comprimés
 - 3.1. Généralités
 - Dimensionnement par les états limites ultimes (E.L.U.)
 - 3.2.1. Considérations générales
 - 3.2.2. Etude d'une section rectangulaire b x h
 - 3.3. Etats limites de service
- [W4. Section rectangulaire avec acters comprimés
 - 4.1. Choix du diagramme de déformation
 - Calcul de la section d'armatures comprimées
 - 4.3. Section d'armatures tendues
 - 4.4. Remarque
- N.5. Section en Te (Dimensionnement à l'E.L.U.)

- V.A. JUST IF ICATION DES POUTRES 50US SOLLICITA-TIONS D'EFFORT TRANCHANT
 - V.A.1. Calcul des contraintes tangentes selon la résistance des matériaux
 - 1.1. Contrainte tangente à la périphérie des armatures longitudinales tendues
 - Contrainte tangente sur une section verticale du hourdis d'une poutre en Té
 - Répartition de la contrainte tangente sur la hauteur de la poutre
 - 1.4. Contrainte tangente dans le plan vertical de j'ontion entre nervure et saillie du talon
 - V.A.2. Comportement des poutres en béton armé sous l'action de l'effort tranchant
 - Etat de contrainte provoqué par l'effort tranchant
 - 2.2. Théorie du treillis de RITTER-MORSCH
 - V.A.3. Règles BAEL 83 : Justification des poutres sous sollicitations d'effort tranchant
 - 3.1. Justification sous contrainté tangente du béton de l'âme

- 3.2. Justification des armatures transversales d'âme
 - 3.2.1. Evaluation de l'effort tranchant
 - Section d'armatures d'âme mécaniquement nécessaire
 - 3.3. Règles concernant les zones d'about
- 3.4. Contrainte d'entrainement des armatures longitudinales tendues
- V.A.4. Règles des coutures
- V.A.5. Calcul des dalles et poutres-dalles à l'effort tranchant